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An Overview of Machine Learning-Based Predictions Techniques Using
Dynamic Graphs

1. Introduction

Graphs and graph representation learning have become an increasingly popular field of research

in the past few years. The number of publications on these topics, as can be seen in Figure 1, has

seen a tremendous surge in the past few years - a 1522.54% increase since the year 2000[1-3].

The widespread interest in this field can be attributed to the utility of graphs and their ability to

accurately model real-life scenarios. Not only are graphs useful tools in the field of data analysis

where they help visualize and analyze the nature of interactions between represented actors but

they have also increasingly become integral to the field of machine learning and predictive

analysis[4,5]. Traditionally, machine learning models have been trained on datasets that

constitute instances inherently assumed to be independent of each other. However, as the

complexity of applications increases, so does that of the subjects of predictive analysis, and thus

more complex representations are warranted.

Figure 1: Increasing trends in graph representation learning publications in the last two decades

To substantiate the above point, the example of a simple content-based recommender system can

be considered. In such a system the training examples typically consist of the past behavior of

the customer and each training example or customer data in the training set is assumed to be

independent of another. However, if user data is modeled as a graph and the underlying
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assumption that each data point is independent of the other is ignored, then the interactions and

similarities that exist between each user may be captured more effectively. The consequent

increase in information available leads to more personalized recommendations and enhanced

user experience. In fact, state-of-the-art recommendation systems such as those employed by big

corporations like Netflix and Amazon make use of network graph models to personalize user

experience[6,7]. Thus, it can be concluded that graphical data as an input to machine learning

algorithms helps make more accurate predictions for complex real-life situations simply because

more information is captured.

A majority of the current machine learning techniques for graphs work under the assumption that

the underlying structure used to make predictions is static in nature but this is rarely true of

real-life interactions [8,9]. For instance, in medical applications of machine learning, most of the

captured patient data is time-variant and in fact, it is these timed variations that most often carry

characterizing information. This is where dynamic graphs come into the picture. In addition to

capturing the spatial information about the scenario they model, dynamic graphs also have a time

component that helps capture temporal fluctuations of information. In terms of applications of

dynamic graphs in predictive analysis, one way to handle this is to apply static graph machine

learning techniques to time-variant graphs, however, the results obtained are more often than not

sub-optimal. This warrants the need to develop dedicated frameworks capable of working with

dynamic graphs. The field of the application of machine learning algorithms to dynamic graphs,

however, is fairly new and most of the work focuses on extending static techniques by treating

dynamic graphs as discrete time-stamped snapshots - a practice that is restrictive in nature. Only

very recently techniques have started to emerge that treat dynamic graphs as continuous time

entities that constantly evolve[10].

The objective of this term paper is to study some of the most recent machine-learning techniques

that have been applied to dynamic graphs to obtain useful predictions. The paper is divided into

five main sections. The present section serves as an introduction to the problem statement, this is

followed by section two where a discussion of the importance of graphs to big data and analytics

is done. In section three, an overview of dynamic graphs, major modeling techniques, and their

areas of application has been provided. In section four, we present the latest machine learning
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frameworks that have been proposed for dynamic graphs and carry out a detailed discussion

about graph representation learning algorithms and graph embedding strategies. Section number

five serves to present the major conclusions drawn from the study undertaken and also discusses

the future line of work that can be carried out in this domain.

2. Background

Graphs are a way to model real-life situations more accurately and represent them in the form of

ordered pairs of interactions with several parameters specified to indicate the nature of such

relationships. Traditionally, a graph can be represented as G(V, E) where the symbol G is used to

refer to the created graph, V stands for the vertices which are often real-life entities modeled by

the graph. E is usually a set containing ordered pairs that symbolize the interaction of the vertices

with each other[11].

Graph analytics is a subdomain of big data analytics that deals with graph-based algorithms that

are used for the identification of relationships and their strength in a given network. The main

idea in graph analytics is to both observe the relationships between the different vertices as well

as capture the structural characteristic of the graph as a whole. In the case of dynamic graphs, a

third objective which is to study the evolution of these structures and relationships over time is

included. Further, graph analytics can also be used to optimize access paths between various

vertices[12]. There are many applications in this field such as social network analysis, security

anomaly detection, recommendation systems, etc. The algorithms that can be used in graph

analytics include clustering or grouping together of similar objects based on labels attached to

graph vertices, partitioning which can help in the identification of weak spots in graph

connectivity, searching or finding a particular element in a graph, the shortest path to find

optimal layouts, connected components to find strongly connected regions useful in social

network analysis, page rank - popularity measure of web pages can be transferred to social

network analysis also[13]. This information is also represented in Table 1 below -
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Table 1: Classes of Graph Algorithms and some application areas

Class of Algorithms Graph relevant description Applications Areas

Clustering These algorithms help in the identification
of similar actors in a graph using specified

node attributes.

In recommendation systems to
personalize user experience.

Partitioning This class of algorithms helps in the
identification of weak link spots in the

context of graphs.

In the configuration of network
layouts and fault localization in

networks.

Search These algorithms help find optimal ways to
localize a given actor in graphs.

Traversal of graphs to find relevant
nodes.

Shortest Paths These algorithms help in finding optimal
paths.

To configure the layout of roads and
bridges, optimal route

configuration, etc.

Connected Components These algorithms help in the identification
of strongly connected regions of a graph.

In social media analysis to find the
most influential neighborhoods.

Page Rank These algorithms help in the numerical
estimation of the importance of nodes in

graphs.

To find influential actors in social
media analysis for marketing and

business applications.

In historical applications[14] of big data, the focus was to study past behavior and make disjoint

predictions based on that. But in recent years, there has been a shift to model experiences

instead. Graphs help add context to data or in other words, mathematically capture some essence

of experience which can help provide insights into the modeling task and lead to better

prediction and/or inferences. Figure 2 below illustrates the market share of the big data and

analytics industry by verticals.

Figure 2: Plot of the usage of Big Data and Analytics in Various Industries [15]
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As can be seen from the pie plot, the major applications of big data and analytics are in industries

that are driven by user experiences and as stated above, user experiences can be modeled better

by capturing interactions and context and graphical representations are able to achieve this. To

put things into perspective, the example of social media analysis[16] can be considered where

the interactions of users can be modeled as a graph and simple metrics such as a node’s

in-degree, out-degree or the connectivity of a subgraph can help identify influential groups and

actors in the social media ecosystem being modeled. Not only does this help understand the flow

of information and gain insight into opinion formation, but more often than not such information

is also important from the marketing perspective.

Therefore in conclusion, it can be said that because the usage of big data is moving more towards

end-user applications, and because graphs model such ecosystems better, a shift towards graph

analytics and graph-based machine learning research has been on the rise in the last couple of

years.

3. Brief Overview of Dynamic Graphs

When graphs become temporal in nature or capture the evolution of the relationships they

represent over time, they are called dynamic graphs. These are mathematically represented as a

series of static graph snapshots over time where each𝐺 =  (𝐺1,  𝐺2,  𝐺3…𝐺𝑡)  𝐺
𝑡
 =  (𝑉

𝑡
,  𝐸

𝑡
)

and t is representing the time component[11].

Figure 3: Dynamic graph event evolution represented as a set of timed static snapshots [17]
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Thus, dynamic graphs are essentially a set of static graphs spread over time [11]. As their name

suggests, in a dynamic graph environment, new nodes can appear, new relationships or edges

may appear and similarly, both can also disappear. A representation of these instances in the case

of a social network of evolving friendships is shown in Figure 3.

3.1 Types of Dynamic Graphs

Dynamic graphs capture a wide variety of information about a given situation including

attributes, interactions, lifespans, etc. and different applications warrant different types of

information at varied granularities[18]. The two major categories of dynamic graphs are discrete

vs continuous dynamic graphs. In discrete graphs, data is captured at fixed and regular time

intervals. In continuous time graphs, on the other hand, a static graph representing the initial state

at time followed by a sequence of temporal observations/events as they occur is captured. In𝑡
0

this case, each observation is a tuple of the form (event type, event, timestamp) where the event

type can be a node or edge addition, node or edge deletion, node feature update, etc., the event

represents the actual event that happened, and timestamp is the time at which the event occurred.

A taxonomy of dynamic graph types is illustrated in the figure below -

Figure 4: Visualization of the types of dynamic graph representations
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Secondly, based on the nature of evolution, dynamic graphs can further be classified into five

sub-categories - node addition and deletion evolution, feature updates - the changes in nodular

attributes, edge addition, and deletion - the modification of relationships over time, edge weight

updates - to capture the evolving strength of relationships between the nodes, and relationship

updates - the nature of the connections evolving over time[19].

3.2 Dynamic Graph Modeling Techniques

Broadly speaking, dynamic graphs can be represented mathematically or modeled as either a

stream of timed events or in the form of ordered pairs of evolutions. The most common way of

representation is in the form of ordered pair of static snapshots where each dynamic graph is

represented as a set of static graphs with time stamps. Another way to model dynamic graphs is

through a difference-based technique where two main components are stored - the first is a static

graph at instance t=0 and the second is a set of timed topological evolutions.

This method exploits the sparsity of topological evolutions in time. In other words, it can be said

that for any real-time event that a dynamic graph models, it is important to capture the

modifications or irregularities that arise since it is these “blips” that contain the most valuable

information. Furthermore, since the number of modifications or irregularities is not very big, in

the case of a large dataset, it makes sense to store the huge invariant chunk of data once and

subsequently to only store the changes which are most often stored as lists of adjacency matrices.

In addition, dynamic graphs may also be stored in the form of continuous time models where the

new additions and departures themselves are time-stamped and the link streams are charged with

node interaction representation[19].

3.3 Dynamic Graph Visualisations

As demonstrated in section 3.1, dynamic graphs can be visualized as time series plots which are

time-dependent snapshots of static graphs. However, there exist other more intuitive ways that

can be used to visualize such graphs. Since dynamic graphs can offer insights into problem

domains even through simple visualization, it is important to offer a brief overview of the

various techniques currently employed to do so.
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One of the ways in which this can be done is through animation. In such a case, the nodes and

their interconnections are shown to be moving objects and most commonly the time evolution is

represented using modifications in shapes, colors, and sizes of the components in a dynamic

graph. Another way is to use heatmaps that model the varying intensity of interactions between

dynamic graph actors as a series of evolving colors in a two-dimensional plot. Streamgraphs are

another specialized way of dynamic graph representation where stacked area plots with nodes

and their consequent edges are shown as color-coded bands. Further, the most intuitive way of

visualizing dynamic graphs is the use of online interactive visualization tools where plots can be

zoomed into, they can be panned, and graph characteristics at different granularity levels and

time instances can be observed[20].

3.3 Dynamic graph application areas

The applicability of dynamic graphs to model modern-day phenomenon is quite vast. For

instance, one of the most researched subdomains of machine learning - computer vision can also

benefit from the application of dynamic graphs. Here, dynamic graphs can be used in tasks such

as activity recognition and object tracking as they can help in the modeling of time-dependent

relations amongst the actors in video sequences. Dynamic graphs can also be used for pose

estimation tasks where these graphs can help model the temporal relationship between the

orientation of body parts in real-time[21-23]. Another important application in computer vision

can be for real-time event tracking systems that can be of great importance in monitoring crowds

and traffic accidents. Video summarization is also another subdomain of application in the larger

computer vision field. Further, dynamic graphs are also useful in natural language processing

tasks, an application that might not be intuitive at first glance. These graphs, however, can help

in document analysis - by modeling the correlation of words and phrases, in sentiment analysis to

study the evolution of emotion over time, and in dialogue systems and text generation tasks[24,

25].

Apart from applicability in subdomains of machine learning, dynamic graphs also have many

uses in real-world task-specific applications. For instance, in the field of traffic monitoring and

mitigation dynamic graphs when coupled with various machine learning technologies can help in

traffic flow prediction, congestion detection, route optimization, public transport scheduling
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incident management, etc [26, 27]. In the healthcare industry, these graphs can help in the

epidemiological modeling of disease spread, patient monitoring systems, healthcare network

analysis, public health surveillance, drug discovery, etc [28, 29].

Currently, dynamic graphs are most commonly used in recommendation systems to provide

personalized suggestions, analyze trends, make context-aware recommendations, and make

cross-domain suggestions. Further, they are also most commonly used in social network analysis

where these graphs help in the detection of communities, influence analysis, anomaly detection,

diffusion analysis, etc [30, 31].

In general, dynamic graphs can be applied to any domain that can benefit from insights provided

by the following general prediction problems - (1) node classifications that help to find classes

for nodes and group similar occurrences together (2) graph classification to look at the overall

graph and classifying similar interactions together (2) link prediction to predict the likelihood of

new relationship formation (3) time prediction to predict when an event happened or when it will

happen. In addition to the above-mentioned prediction problems that are transductive in nature

i.e., which predictions are made about entities that are present and observed when training is

taking place, dynamic graphs and many of the proposed machine learning algorithms can handle

inductive problems as well - these are those problems where predictions about unseen entities or

new graphs have to be made.

4. Dynamic Graphs and Machine Learning

Traditional machine learning techniques assume that data samples are independent in nature and

are designed to take in attributes about a particular entity and make predictions based on these

attributes. Consequently, inputs to most of these models are flattened vectors or tensors. Most

machine models are thus not equipped to handle the complex information that is modeled by a

graph. In order to make graphs compatible with machine learning tasks, initially graph kernels

were used (for static graphs). These kernel methods are mostly used in classification analysis

wherein the inner product of two graph inputs is usually computed to measure their similarity

metric. These similarity measures can then be plugged into machine learning algorithms such as

support vector machines or SVMs for probabilistic predictions.
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These kernel methods have, however, recently lost popularity and another methodology

employing graph neural networks are being used. Graph neural networks are, as their name

suggests, a graph-in-graph-out neural network architecture designed to take in as their input

graphs and produce optimizable statistical mappings of these graphs called embeddings. These

embeddings are simplified lower-dimensional representations of graphs that capture all the

spatial relationships and maintain the overall graph connectivity information. Graph embedding

can be thought of as being analogous to feature engineering tasks. Just like in the case of feature

engineering, in graph embedding, the input is transformed into a more usable representation that

can be suitably utilized by the machine learning algorithm to make useful predictions.

However, as stated earlier, in most complex applications it is integral to capture the nature of the

interactions between these entities over time to be able to make better predictions and this is

where dynamic graphs come into the picture and the complexity of the embedding task increase

manifold. Traditionally for static graphs, graph neural networks as described above are used to

make predictions, and a large chunk of research is now focused on the transferability of GNNs

onto dynamic graph space but in addition to this, novel embedding mechanisms and even

embedding free prediction architectures for dynamic graphs are also being developed. In the

section that follows, we present an overview of the most prominent techniques being applied to

dynamic graphs to obtain useful ML-based predictions from them.

4.1 Prominent Machine Learning on Dynamic Graphs Architectures

In general machine learning techniques that are applicable to dynamic graphs can be broadly

classified into two groups - first dynamical algorithms and second graph representation learning

algorithms. In dynamical algorithms, the first step is to produce a first solution for a given static

graph - this is called preprocessing - and then for any subsequent updates in the graph, the

solution space is also suitably updated. This is in direct contrast to representational

learning-based techniques where the idea is to embed the given input dynamic graph into vectors

and then perform machine learning computations on these embeddings - the process of

embedding production can be machine learning based or not. Section 4.2 that follows discussed

dynamic graph embedding techniques in detail.
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In the case of dynamical algorithms for node clustering tasks, Dhanjal et al [32] in their work

present a spectral clustering algorithm for nodes that constitute a dynamic graph. They primarily

employ the single value decomposition technique of rank k on a laplacian matrix of the given

dynamic graph a process that as its result produces a novel node eigenspace for each of the

nodes in the graph. These nodes represented in the new eigenspace are then grouped together or

clustered. To incorporate a dynamic graphs temporal component, the framework updates the

singular value decomposition of the graph laplacian to account for the changes and consequently,

the cluster labels for nodes are also subject to changes and updated. Gorke et al [33] utilize the

concept of a partial minimum cut tree to achieve graph clustering. Here, given an initial weight,

an artificial node is inserted into the given graph and is connected to all other network nodes at a

time instance with the given weight value. Using this, a minimum cut tree of the graph is

obtained and the artificial node is removed from consideration thereby facilitating clustering by

utilization of connected components of the minimum cut tree. In their algorithm, a partial

minimum cut tree is first dynamically updated as is the case with dynamic graphs, and this

update is used to update the clustering.

For classification tasks, the first algorithm for node classification in dynamic graphs was

proposed by Aggrawal et al [34] and was titled DYCOS. This algorithm used random -walk and

made use of both the node linked and the content of nodes for the classification task. Yao et al

[35] proposed a support vector machine classification algorithm for dynamic graphs where the

label update only occurs in case of a new node addition or an edge addition in the dynamic

graph. At the core of their methodology, the support vectors learned from the previous set of

nodes and edges that are then used to predict the class labels for all future nodes, and the model

is updated after each batch addition (new node and edge addition). Further, Xu et al [36]

proposed AdaNN that is an aggregation-based framework that computes and endeavors to learn

node attributes by aggregating both node and neighbor attribute information. The random walk

method is used to gather structural information about the node’s neighborhood.

In the case of graph representation learning-based methods, the architectures, unlike in the case

of dynamical algorithms can be divided into two major parts - the encoder and the decoder. The
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encoder mainly works to produce embeddings of the dynamical graph and the decoder is usually

a classic prediction model such as a multi-layer perceptron model (MLP) that uses the

embeddings to make suitable predictions. The architectures described henceforth are all

representation learning based and employ the same basic aforementioned methodology.

Temporal Graph Network or TGN as proposed by Rossi et al [11, 37] is a general-purpose

encoder architecture that has four main components. The first is the memory which is analogous

to hidden states in Recurrent Neural Networks or RNN and is charged with the task of

representing the past interactions of a node. The second component is a message function that

captures node interactions and encodes them as a vector for each of these nodes in memory. The

memory updater is the third component that embeds the new messages computed into the

memory. A major contribution of their work is that they tackle the staleness problem - the case

where many of the nodes are not frequently changing state/interacting. They do this by using a

module called embedding that performs aggregation on the neighbors of the inactive nodes and

on the memories of the most likely active neighbors and this helps them compute an up-to-date

embedding for the nodes. To train the TGN, another module namely the raw message store is

introduced that helps prevent leakage during training. When the performance of their model was

compared with other baseline techniques, the success observed was attributed to the existence of

the memory component that reduces computation and complexity three folds and to the

embedding module that tackles staleness.

Ma et al [38] propose a dynamic graph neural network framework that mainly constitutes two

parts - the update and propagation components. It extends the idea of static graph neural

networks and endeavors to learn graph embeddings progressively and apply the proposed

technique on dynamic graphs to capture the evolution of phenomena modeled therein. The

framework is designed to automatically update information present in the attributes of the nodes

by gathering information about the edge interactions and the time intervals between the edge

propagations and encoding this into the embeddings. They evaluated the performance of their

model with tasks such as link prediction, node classification, etc and these experiments echoed

the superiority of performance.
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Gunarathna et al [39] proposed GTA-RL (Graph Temporal Attention with Reinforcement

Learning) wherein they focus their attention on dynamic graphs that capture combinatorial

problems such as that in the case of a ride-sharing scenario. They propose a novel

encoder-decoder architecture that uses a multi-dimensional attention methodology to embed both

the temporal and the spatial features of a graph in parallel and then employs a fusion mechanism

to learn the interdependencies between the consequent embeddings. These are then arranged in a

series and fed into a temporal pointing decoder that pays attention to the spatiotemporal

representation for the decision-making stage The GTA-RL model undergoes training by virtue of

a reinforcement learning-based policy-gradient algorithm. To address situations where the

dynamic changes are not already known, they partially embed their encoder inside of the decoder

thereby making GTA-RL highly relevant to real-time decision-making applications.

An architecture entitled NEDGNN or the Novel Neighborhood Extended Dynamic Graph Neural

Network was proposed by Yu et al [40]. Their architecture focuses on capturing the temporal

evolution of the graphical data as a whole and localizing the modifications in the neighborhoods

therein over time. The uniqueness of their architecture lies in the introduction of a novel module

entitled the temporal attention propagation module. This part of their architecture is responsible

for spreading information messages to the n-hop neighbors of a node and it utilizes a

self-attention mechanism in order to achieve that. Further, in order to enhance their architecture's

time-space performance, a FIFO (First-In-First-Out) message box module is used.

An Evolving Graph Convolutional Network Design for Dynamic Graphs or EvolveGCN for

short was proposed by Pareja et al [41]. Their architecture is in direct contrast to most

mainstream models where the main goal is to use a graph neural network or GNN to extract

embeddings from an input dynamic graph and then use a pipelined Recurrent Neural Network or

RNN to make predictions based on the information contained in the embeddings. Instead,

EvolveGCN uses the Recurrent Neural Network not to make predictions from embeddings but to

actually propagate time-based evolutions as modifications back into the graph neural network

where these messages are used to evolve the network itself. This methodology helps their

architecture to skillfully capture the changes in a dynamic graph in the network parameters itself.

In order to update the weight matrix of their proposed methodology, they offer two versions of
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the EvolveGCN architecture. The first version entitled H- is implemented using gated recurrent

units (GRU). The second version entitled the O- version is based on a standard LSTM

(Long-Short-Term-Memory) model. In their article, they suggest that the GRU-based weight

update version should be used when for the prediction task, node attributes are of importance. In

contrast, the O- version of the architecture should be used when the end goal of the application is

to make predictions based on the structure of the graph as a whole. They also test their proposed

architecture on tasks such as node classification, edge classification, link prediction, etc, and

their model was shown to outperform most baseline contemporaries.

Incremental learning is a branch of machine learning that utilizes ever-changing input data to

continuously enhance the model’s knowledge by taking into account new developments. Kim et

al [42] propose a novel incremental learning-based framework which they title DyGRAIN. Their

model addresses one of the most crucial challenges of incremental learning with dynamic graphs

which is that the receptive fields are also dynamic in nature. Their proposed framework

DyGRAIN is capable of suitably identifying the most important changes that are taking place in

the graph receptive fields. The two main components of their architecture that help them achieve

this are the influence propagation area and the knowledge distillation with the truth component.

The influence propagation area identifies the most influenced nodes by new inputs and the

knowledge distillation with the truth component identifies all those current nodes that become

insensitive to previously learned information by computing the loss discrepancy.

Text and image generation, even video generation in recent times, using static data are problems

that have received widespread attention in academia. Furthermore, some of the RNN and

Generative Adversarial Network (GAN) based approaches have also found tremendous success

in such prediction tasks. Zhang et al’s [43] work focuses on a similar but relatively unexplored

area of machine learning applications on dynamic graphs which is that of dynamic graph

generation. They propose their model D2G2 or Disentangled Deep Generative Model for

Interpretable Dynamic Graph Generation. Instead of reinventing the wheel, their model focuses

on exiting a pre-existing static graph approach to dynamic graphs by overcoming three salient

challenges - (1) lack of decoders for joint edge and node generations, (2) difficulty of

characterization of static and dynamic graph components, and (3) difficulty in the joint modeling
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of the dynamics of nodes and edges. Their method works with attributed temporal graph

generation wherein the generative model is formulated as a Bayesian network tasked with

characterizing the independence among the components of the graph. Further, based on the

conditional independence that exists between the variables, they provide two separate inference

models - factorized inference model and the full inference model. Lastly, based on recurrent and

graph deconvolutions, novel node-edge encoders are proposed. As a part of their research, they

also undertake performance comparison studies that further solidify the utility of their technique.

Trivedi et al [44] propose DyREP which is a novel modeling framework that is shown to

outperform existing baselines for link prediction problems and time prediction problems on

dynamic graphs. Their newly proposed framework is a representation modeling-based system

that takes in dynamic graphs represented as association or communication events and

dynamically updates the node representations in accordance with such events. Since their model

focuses on association and communication events, their solution utilizes the concept of a

two-time scale temporal point process methodology. This temporal point process model is

parameterized with the help of a representation network that is inductive in nature which

facilitates the modeling of the node representations. Finally, they design a novel component for

their pipeline for mapping a dynamic graph into lower dimensional embeddings called the

temporal attention mechanism that helps capture attentive neighborhood information that

governs node representations over time.

Zhu et al [45] propose an application-specific novel architecture for Alzheimer's disease

diagnosis using graph convolutional networks as one of the components of their architecture. The

architecture is composed of three modules - the first is an interpretable feature learning module

that selected only the most informative features at any stage and attempts to eliminate redundant

features by attempting to capture the correlation of nodes. The second module deals with

dynamic graph learning and it deals with the task of generating graph embeddings that capture

relevant neighborhood relationships. The last is the graph convolutional network module that

outputs the diagnosis for a given input based on learnings it has gained while training on and

studying the embedded characteristics of the fed dynamic graph structure.
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Zhang et al [46] propose a framework that focuses on leveraging the unique characteristics of

dynamic graphs to create a more intuitive and personalized recommendation system. Their

model is entitled DGSR or the dynamic graph neural network and is used to obtain sequential

recommendations. They argue that most of the currently existing methods in the field of user

preference modeling and consequent recommendation-making focus only on the users’ interest

and their own pattern/sequence of choices. Most of the current methods do not pay heed to

collaborative relations that may exist between different users’ item choice sequences. To address

this challenge, they set out to use dynamic graph structures and model a user’s own preference

sequence and the dynamic collaborative signals between different user sequences into one

cohesive model. Their framework utilizes a subgraph sampling strategy that helps extract only

relevant user sequences and this information is encoded using the dynamic graph

recommendation network which constitutes an attention module as well as an RNN module to

learn both short-term and long-term preferences from user sequences. They design a dynamic

graph recommendation network that helps model user interactions as a dynamic graph and thus

consequently convert the recommendation task to a link prediction problem between two nodes.

Peng et al [47] propose a reinforcement learning-based graph convolutional network approach

tuned specifically to traffic flow problems. They tackle the problem of data integrity in the traffic

prediction task by proposing the use of reinforcement learning. In particular, they use a graph

convolutional policy network on traffic flow probability graphs which are the baseline inputs for

the model, and operate under the assumption that this data is defective. Using the reinforcement

learning technique, dynamic graph sequences are generated that suitably capture the

characteristics of the given traffic flow graph and utilize complete historic information to

produce more complete and accurate graphs. Following this, graph convolution is performed on

these results - a process that is intended to capture the spatial information from the dynamic

graphs - and an LSTM model is used to capture both the temporal information and the dynamic

nature of the problem.

Peng et al [48] also previously proposed another framework called Dynamic GRCNN and

focused their application to predict urban traffic passenger flows. Here, they utilize historic

passenger flow data and use it to construct dynamic graphs that model relationships among the
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traffic transportation hubs. The node attributes, here, capture information regarding the inflow

and outflow of passengers. This dynamic graph is then fed into the Dynamioc GRCNN model to

output feature embeddings and the final prediction is extracted using a three-layer simple MLP

(Multi-Layer Perceptron) model to predict each station's inflow and outflow as a node attribute

prediction task.

Goyal et al [49] propose their embedding model dyngraph2vec which uses deep learning

architecture made up of dense recurrent layers that is capable of learning the time-based changes

that occur in the network. Their goal was to understand how the ever-changing nature of the

graph affects the performance of prediction tasks by capturing the underlying evolution dynamic.

Their method focuses on learning the structural patterns in each network by virtue of non-linear

layers and it uses recurrent layers to understand temporal dependencies.

La Gatta et al [50], in their article, apply the dynamic graph problem to the task of modeling

COVID-19 evolution. Traditionally, mathematical models such, as the SIR model, are used to

represent the spread of diseases. However, such models fail to incorporate preventive measures

taken by actors and also do not capture the introduction of new dynamic states into the model to

distinguish those who have and have not taken precautions. To overcome this challenge, the

authors have modeled the diffusion of the epidemic as a dynamic graph where the vertex

corresponds to places and edges represent the spread and movement of infection. Further, they

apply graph convolutional networks and LSTM to capture the spatiotemporal characteristics of

these graphs and accurately model real-time pandemic spread trends. Instead of traditional

epidemiological models that tend to model the diffusion of disease in one particular area as a

whole, their novel technique helps to observe the flow of infections amongst different areas

effectively.
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Table 2: Summary of the surveyed Machine learning models

In Table 2 above, a summary of the presented frameworks has been presented -

4.2 Dynamic Graph Embeddings

From the various models presented in the section above, it can be concluded that generally

speaking, for most graph representation learning-based approaches, the proposed architecture is

of the general form illustrated in figure 5 below.
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Figure 5: General Architecture of ML Models that Work with Dynamic Graphs

For most of the surveyed models, the encoder is usually the portion of the architecture that

produces graph embeddings and the decoder constitutes mainstream predictive algorithms that

can be trained to work on the produced embeddings. The nature of the decoder model used and

the embeddings produced depend on the application at hand. Furthermore, it can be observed that

the main task in most of the dynamic graph prediction models presented above is to devise

efficient embeddings for graph information. Thus in conclusion, in most recent works on

machine learning model applicability to dynamic graphs, much emphasis is placed on the

generation of graph embeddings. Figure 6 below illustrates a general taxonomy of the various

dynamic graph embedding techniques that are currently in use. A detailed overview of some of

these available embedding techniques and the associated algorithms is followed.

Figure 6: taxonomy of the various dynamic graph embedding techniques [19]
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Graphs are non-euclidean structures that contain three levels of information within them - this is

information at the node level, at the edge level, and that at the graph level. While graphs are a

very good way to visualize and represent real-life scenarios computationally, there have to be

suitable mathematical representations to be able to perform computations on them. Traditional

representations of graphs like the adjacency matrix might look like a valid solution but as the

complexity of real-life situations grows (consider a case where you have 1 million rows for each

time instant) the adjacency matrix approach is no longer practical. The most common way to

handle this problem is to use a technique called graph embedding. Graph embeddings help to

represent an input graph as a vector thereby modifying it to become a more suitable input to

machine learning models. This mapping to vectors is done in a manner that captures the salient

topological features of the graph.

At the node level, dedicated node embeddings can be produced that result in vectors that capture

information about the graph structure. Similarly, in edge embeddings, each edge of a graph is

mapped to an edge vector. For example, in a social network, you can have a multi-edge graph

where nodes could be connected by edges based on age ranges, gender, friendships, etc. An edge

embedding in such a case would capture the aforementioned attributes. In the same graph, node

embeddings could capture information about the personal characteristics of the actors involved in

the social network. Embeddings on the graph level are not as common and they consist of

generating an embedding vector representing each graph. Think of a large graph with multiple

subgraphs, each of the corresponding subgraphs would have an embedding vector representing

the graph structure. Classification problems are a common application where graph embedding

can be useful [19].

One of the major techniques that can be used to produce dynamic graph embeddings is

factorization-based methods where the idea is to compute similarity measures amongst the

time-stamped snapshots and then map these to a lower dimensional space. The similarity

matrices that are computed can be represented in two main ways - as a series of similarity

matrices called the matrix factorization approach or as a three-dimensional tensor where the first

two dimensions store the metric value and the third represents the time dimension called the

tensor factorization approach. Some of the techniques that use matrix-based factorization to
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embed dynamic graphs include Zhu et al’s [51] temporal latent space model with the gaol to

predict the evolution of links based on previous snapshots of latent space. Further, Ferreira et al

[52] propose a temporal ideological space model while studying and analyzing the behavior of

dynamic political networks. Their method is baes on temporal vertex embeddings and is capable

of revealing patterns - both in terms of the dynamically changing opinions characterized by

actors and the overall network structure. Both the above approaches involve the joint

optimization of the loss function and the concept of temporal smoothing in order to obtain the

embeddings. Tensor factorization approach is used in the CP [53] tensor rank decomposition

technique and in the TuckER model to produce graph embeddings [54].

Neural network architecture, as has been seen in section 4.1 have shown remarkable performance

in producing dynamic graph embeddings in recent years. Architectures that employ recurrent

neural networks such as LSTMs and GRUs have been proposed and have the capability to

produce embeddings that encapsulate temporal correlation of graph components as well as the

more complex underlying correlations amongst graph attributes. Furthermore, based on the

specific application at hand, attention components can be added to the neural networks to focus

the embeddings to capture a particular kind of correlation well. Recently, convolutional neural

networks as iterative propagation procedures have also been employed to produce dynamic graph

embeddings [55, 56]. Generative models, such as variational autoencoders (VAEs) and

generative adversarial networks (GANs) can be employed to gradually learn these data

distributions in dynamic graphs. These networks can learn an approximate representation of the

network distribution by capturing the data distribution and using a recognition network (or a

discriminator network) to calculate the likelihood that a sample came from the data distribution.

This helps them learn low-dimensional latent representations of the training data.

A third technique to obtain graph embeddings is the random walk method which makes it

possible to extract higher-order relationships without adjacency matrices using a class of

algorithms for graph embedding functions that generate a context for each node. Numerous

random walks of a defined length L are used to create the node sequence matrix, which is then

factorized using a neural network architecture like the Skip-Gram [57] to create low-dimensional

vector representations for each node while preserving their closeness in the new embedded
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space. Random walks must produce time-dependent contexts on dynamic graphs. Walks on

snapshots, evolving random walks, and temporal random walks are the three methods in this

category that can be used to incorporate the temporal aspect. To create contexts, one can

potentially apply additional node sequence sampling techniques such as neighborhood

aggregation.

Finally, another major category of dynamic graph embedding technique is the temporal point

process-based approaches. Here, it is assumed that interactions between nodes are a function of

the network topology, node attributes, and historic interactions and that if an event affects a given

node then as a consequence all the nodes that are susceptible to its influence shall also be

affected. Other embedding techniques include agnostic-based methods, temporal smoothing with

optimized edge reconstructions, etc.

5. Conclusions and Future Scope

The application of machine learning algorithms to dynamic graphs is a new and upcoming field

in the graph machine learning domain. Much work is being done in this field due to the

significant importance of such applications to real-world problems. Through the use of

dynamical approaches and graph representation learning, the most recent research is well on its

way to tackling the unique problems associated with the usage of such graphs such as the

efficient tackling of the temporal component.

In this term paper, the analysis of the usage of machine learning algorithms that perform

predictive analysis of dynamic graphs was performed. Initially, a survey of the relevance of

dynamic graphs to the big data and analytics industry was conducted and the reason for the

failure of traditional machine learning methods or static graph frameworks in the case of their

dynamic counterparts was highlighted. Further, a brief overview of dynamic graphs, the different

ways in which they can be modeled and visualized, and their importance to numerous critical

areas of applications was presented. The currently used and most recent machine learning

frameworks being used to make dynamic graph-based predictions were surveyed and it was

discovered that these classes of algorithms are broadly of two kinds - dynamical or graph

representation learning based. The exploration of the field also helped conclude that a majority
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of the algorithms being developed focus their attention on the production of dynamic graph

embeddings and hence a detailed overview of various techniques that produce embeddings was

also presented.

However, it must be noted that the field of machine learning with dynamic graphs is still

relatively new, and significant work needs to be done to tackle the numerous flaws the currently

proposed frameworks suffer from. Some of the challenges that need to be addressed in this field

include -

● Lack of Sophisticated modeling - The current algorithms used to produce dynamic graph

embeddings are limited in their ability to capture the complex spatiotemporal

dependencies in dynamic graphs.

● Lack of scalable solutions - Real-world scenarios when modeled using dynamic graphs

can generate structures of the order of hundreds of millions of nodes and relevant

frameworks to tackle such large-scale dynamic graphs need to be developed.

● Lack of a standardized approach to evaluate performance - while many new machine

learning frameworks for dynamic graphs have been proposed recently, there is a lack of

research comparing and contrasting the most recent methods. Furthermore, there is no

standard approach to evaluating a dynamic graph-based model’s performance leading to a

wide array of promising but incomparable performance metrics.

In conclusion, it can be stated that dynamic graphs and the application of machine learning

algorithms to these complex structures is a rapidly growing field due to the numerous advantages

it offers. While working with dynamic graph structures is complicated due to the challenges of

handling the complex information they carry, the development of suitable frameworks can lead

to more refined and personalized predictions which are of great importance in today’s user

experience-based industry. Therefore, while much work is required to refine methodologies that

can help unlock the potential of dynamic graph applications, it is clear with the present trends

that dynamic graphs will play a big role in the field of predictive analysis in the coming time.
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